Устойчивость, реакционная способность и многие физические свойства координационных соединений 3d-металлов во многом определяются электронной конфигурацией комплексообразователя, симметрией координационного полиэдра и значениями констант образования, определяющих стандартную величину окислительно-восстановительного потенциала.
Для одного и того же комплексообразователя окислительно-восстановительный потенциал может существенно изменяться; этим достигается стабилизация требуемой степени окисления центрального иона. В табл. 9.3 приведены степени окисления 3d-металлов в координационных соединениях.
dn | Sc | Ti | V | Cr | Mn | Fe | Co | NI | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
d0 | 3 | 4 | 5 | 6 | 7 | |||||
d1 | 3 | 4 | 5 | 6 | ||||||
d2 | 3 | 4 | 5 | 6 | ||||||
d3 | 2 | 3 | 4 | |||||||
d4 | 2 | 3 | ||||||||
d5 | 1 | 2 | 3 | 4 | ||||||
d6 | 0 | 1 | 4 | 3 | 4 | |||||
d7 | 2 | 3 | ||||||||
d8 | 2 | 3 | ||||||||
d9 | 2 | |||||||||
d10 | 1 | 2 |
Электронные конфигурации во многом предопределяют свойства и строение координационных соединений 3d-металлов.
3d0 (Sc3+, Ti4+, V5+, Cr6+, Mn7+) обычно образуют тетраэдрические тетраоксоанионы ( ) и октаэдрические [ScF6]3–, [TiF6]2–, [VF6]–.
3d1 (Ti3+, V4+ или VO2+, Cr5+, Mn6+), соединения Ti3+ обычно имеют октаэдрическое строение [TiCl6]3–, [Ti(H2O)6]3+, в водных растворах V4+ не существует, переходя в ванадил-ион с искаженной октаэдрической структурой [VO(H2O)5]2+. Соединения Cr5+ и Mn6+ обычно известны в виде анионов и которые в водной среде диспропорционируют.
3d2 (Ti2+, V3+, Cr4+, Mn5+, Fe6+). В водных растворах они неустойчивы: [Ti(H2O)6]2+ – сильнейший восстановитель, и – сильнейшие окислители. Они в этих степенях окисления существуют только в твердом состоянии.
3d3 (V2+, Cr3+, Mn4+). Из них наиболее устойчив Cr3+ в октаэдрических комплексах, которые относятся к инертным соединениям независимо от вида комплекса (катионного, анионного или нейтрального). Они интенсивно окрашены, поскольку основные полосы поглощения находятся в видимой области.
3d4 (Cr2+, Mn3+). В водных растворах гексааквакомплексы [Cr(H2O)6]2+ и [Mn(H2O)6]3+ неустойчивы; первый окисляется до [Cr(H2O)6]3+, а второй диспропорционирует 2Mn3+ → Mn2+ + Mn4+. Стабилизируют эту электронную конфигурацию двойные соли M2ISO4ċCrSO4ċ6H2O (M = NH4+, Na+, K+, Rb+, Cs+), в которых Cr2+ остается высокоспиновым (S = 2) и бидентатные лиганды (dipy – дипиридил и phen – фентантролин ). Комплексы [Cr(dipy)3]X2 и [Cr(phen)3]X2 (X = Cl, Br, I) оказываются низкоспиновыми (S = 1). В моногидрате ацетата Cr (II) стабилизация электронной конфигурации обусловлена димеризацией (рис. 9.8).
Межатомное расстояние Cr–Cr (0,264 нм) обусловлено образованием четверной связи между атомами хрома за счет всех четырех d-электронов.
Соединения Mn (III) стабильны с лигандами, образующими металлоцикл, в частности с ацетилацетоном
![]() |
![]() |
или с тетрадентатными плоскими лигандами типа N'N'-этилен-бис(салицилиденимином), в которых Mn(III) стабилизируется в результате димеризации с образованием μ-оксо соединения – μ-оксо-[N'N'этилен-бис(салицилидениминат) марганца (III)]
3d5 (Mn2+, Fe3+). Октаэдрические комплексы устойчивы как в водных, так и неводных растворах. С лигандами слабого поля они образуют высокоспиновые комплексы – [Fe(H2O)6]Cl3, K3[FeF6], с лигандами сильного поля – низкоспиновые комплексы: K3[Fe(CN)6], K4[Mn(CN)6].
3d6 (Fe2+, Co3+, реже Ni4+). Электронной конфигурации 3d6 в октаэдрическом окружении энергетически выгодно образование низкоспиновых комплексов (энергия стабилизации кристаллическим полем наибольшая – 2,4 Δокт); только слаболигандные комплексы остаются высокоспиновыми – [FeF6]4– и [CoF6]3–.
3d7 (Co2+, реже Ni3+). Октаэдрические комплексы Co(II) в водных растворах менее стабильны, чем тетраэдрические. Это обусловлено более симметричным размещением электронов на расщепленных полем лигандов d-орбиталях:
3d8 (обычно Ni2+). В многочисленных октаэдрических комплексных ионах – [Ni(H2O)6]2+, [Ni(NH3)6]2+, [Ni(NO2)6]4– – Ni2+ сохраняет два неспаренных электрона. Если же образуются плоские четырехкоординационные (квадратные) комплексы типа
3d9 (Cu2+). Ионы Cu2+ образуют многочисленные координационные соединения с координационными числами шесть, пять и четыре: [Cu(H2O)6]2+, [CuCl5]3–, [Cu(NH3)4]2+ или [CuCl4]2–. Единственный неспаренный электрон сохраняется независимо от симметрии. Моногидрат ацетата меди (II) в кристаллическом состоянии изоструктурен моногидрату ацетата хрома (II) (рис. 9.8). В бис(μ-диацетато-0'0'-аква) димеди (II) ионы меди (II) связаны слабой δ-связью, результатом которой является молекулярный антиферромагнетизм, объясненный впервые при интерпретации необычных спектров электронного парамагнитного резонанса.
3d10 (Cu+, Zn2+). Ион Cu+ обычно является двухкоординационным [CuCl2]–, [Cu(NH3)2]+, а Zn2+ в зависимости от лигандов может быть тетраэдрическим [Zn(CN)4]2– или октаэдрическим [Zn(H2O)6]2+.
Кинетическая устойчивость комплексов во многом определяется электронной конфигурацией центрального атома и его симметрией.
Окраска координационных соединений обусловлена переходами между энергетическими уровнями, определяемыми электронной конфигурацией центрального иона и симметрией координационного полиэдра. При этом поглощается часть видимого спектра в виде суперпозиции полос поглощения как результат перехода с нижнего уровня на вышележащие, а соединение приобретает окраску, дополнительную к цвету поглощаемых лучей (табл 9.2). Ионы [Sc(Lig)6]3+ и