Учебник. Двухатомные молекулы


Двухатомные молекулы

У элементов второго периода в образовании химических связей принимают участие кроме s- еще и p-орбитали, при этом соблюдаются следующие условия: АО должны иметь близкие энергии, перекрываться в значительной степени, иметь одинаковую симметрию относительно линии связи, число МО должно быть равно числу образующих их АО.

Итак, рассмотрим гомоатомные молекулы второго периода.

Если подуровни 2s- и 2p-состояний достаточно разделены по энергии, комбинации s- и p-АО можно рассматривать раздельно; 2s-орбитали образуют МО σs и σs* (рис 3.10). Из рис 3.10 видно, что возможно образование молекулы Li2 ( σ 2s св ) 2 , но не Be2, поскольку σ2sсв и σ2s* заселены одинаково. Одна из 2p-орбиталей, например, 2px-орбиталь, при комбинации с 2px-орбиталью другого атома образует связь σx-типа. Оставшиеся две АО py и pz перпендикулярны линии связи (оси x) и энергетически равноценны. Поэтому они образуют два вырожденных уровня энергии, соответствующих МО π y св , π z св и πy*, πz*. В начале периода s- и p-подуровни близки по энергии, поэтому уровень σx расположен выше πy-, πz-уровней (рис. 3.10). Поскольку расстояние между s- и p-подуровнями увеличивается в периоде с ростом Z, то схема уровней на рис. 3.11 лучше всего описывает молекулы элементов конца периода, начиная с кислорода.

Уровни энергии МО элементов 2 периода (начало периода). Заселение МО указано для B2
Уровни энергии МО элементов 2 периода (конец периода). Заселение МО указано для О2

В табл. 3.2 приводятся схемы МО гомоядерных молекул элементов второго периода. Как видно из нее, кратность, длина и энергия связи определяются числом связывающих и разрыхляющих электронов.

Если воспользоваться рассмотренными символами, то электронную формулу молекулы кислорода можно записать так: s)2s*)2x)2y, πz)4y*, πz*)2.

Анализ табл. 3.2 позволяет сделать ряд выводов.

  1. Удаление электрона со связывающей орбитали уменьшает энергию связи в молекулярном ионе ( N 2 + и N2), а удаление электрона с разрыхляющей орбитали приводит к увеличению энергии связи в молекулярном ионе в сравнении с молекулой ( O 2 + и O2).

  2. Потенциал ионизации молекулы ( I Э 2 ) больше потенциала ионизации атома (IЭ), если в молекуле верхний заполненный уровень – связывающий. И наоборот, I Э 2 меньше, чем IЭ, если верхний заполненный уровень – разрыхляющий. Например, I N 2 = 15,58 эВ, а IN = 14,53 эВ, но I O 2 = 12,08 эВ, а IO = 13,62 эВ.

  3. Схема МО легко объясняет наличие неспаренных электронов, а следовательно, парамагнетизм таких частиц, как молекулы B 2 и O 2 , и молекулярных ионов H 2 + и He 2 + .

Энергетическая диаграмма МО гетероядерной молекулы АВ, где A имеет меньшую электроотрицательность, чем B

В случае гетероядерных молекул в связывающие орбитали значительный вклад вносят атомы с большой электроотрицательностью (рис. 3.12), и связывающие орбитали по энергии ближе к орбиталям более электроотрицательного атома.

Величина «b» антибатна ковалентности связи. Cледует отметить, что в общем виде для гетероатомных изоэлектронных молекул можно использовать одни и те же схемы МО. Например, для рассмотрения строения СО, BF, NO+ и CN можно использовать схему МО для N2, так как у всех этих частиц по 10 валентных электронов.

Однако в отличие от гомоядерных эти молекулы хотя и изоэлектронны, но образованы атомами с неодинаковыми зарядами атомов Z. Например, в молекуле СО АО кислорода лежат ниже АО углерода (это различие отражается на величинах потенциалов ионизации атомов: I1 углерода – 11,09 эВ, I1 кислорода – 13,62 эВ). Схема МО молекул СО, BF и молекулярных ионов NO+, CN несколько трансформирована по сравнению с N2 в соответствии с требованиями построения диаграмм МО гетероядерных молекул. На рис. 3.13 приведена энергетическая диаграмма МО молекулы СО. При сохранении кратности связи энергия связи СО равна 1070 кДжċмоль–1 против 842 кДжċмоль–1 в N2. Это увеличение вызвано дополнительным вкладом ионной составляющей из-за разности электроотрицательностей атомов углерода и кислорода. Адекватное экспериментальным данным строение монооксида углерода соответствует формуле C ≡ O+. Такое необычное распределение зарядов обусловлено переходом лишней по сравнению с углеродом ( 2s 2 2p x 1 p y 1 p z 0 ) электроннной пары O( 2s 2 2p x 1 p y 1 p z 2 ) на молекулярные орбитали СО и хорошо согласуется с экспериментальной величиной дипольного момента СО μ = –0,027ċ10–29 Клċм (–0,08 D). Отрицательный знак означает направление дипольного момента от кислорода к углероду.

Энергетическая диаграмма МО молекулы СО

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".

 

 

 

© Физикон, 1999-2024