Главная   Бесплатные онлайн учебники   Подготовка по всем предметам онлайн   Подготовка к ЕГЭ 2018 онлайн



Глава 2. Электронное строение атомов

Назад Вперед
Назад Вперед

2.6. Периодичность атомных характеристик

Атомный радиус. За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Это так называемый орбитальный радиус. При изучении строения молекул и кристаллов атомы и ионы можно рассматривать как имеющие некий эффективный радиус, зависящий от типа химической связи. Если рассматривать только относительные величины атомных радиусов, то легко обнаружить периодичность их зависимости от номера элемента.

В периодах орбитальные атомные радиусы по мере увеличения заряда ядра Z в общем монотонно уменьшаются из-за роста степени взаимодействия внешних электронов с ядром.

В подгруппах радиусы в основном увеличиваются из-за возрастания числа электронных оболочек.

У s- и p-элементов изменение радиусов как в периодах, так и в подгруппах более ярко, чем у d- и f-элементов, поскольку d- и f-электроны внутренние. Уменьшение радиусов у d- и f-элементов в периодах называется d- и f-сжатием. Следствием f-сжатия является то, что атомные радиусы электронных аналогов d-элементов пятого и шестого периодов практически одинаковы:

Zn – Hf Nb – Ta
rатома, нм 0,160 – 0,159 0,145 – 0,146
Таблица 2.3

Эти элементы из-за близости их свойств называются элементами-близнецами.

Образование ионов приводит к изменению ионных радиусов по сравнению с атомными. При этом радиусы катионов всегда меньше, а радиусы анионов всегда больше соответствующих атомных радиусов. Ковалентный радиус равняется половине межатомного расстояния в молекулах или кристаллах простых веществ. Ионные радиусы элементов представлены в табл. 2.4.

Энергией ионизации атома I называется количество энергии, необходимое для отрыва электрона от невозбужденного атома или иона.

Энергия ионизации I выражается в кДж∙моль–1 или эВ∙атом–1. Значение I в электронвольтах численно равно потенциалу ионизации, выраженному в вольтах, поскольку E = e-·I.

Э+ – e = Э+, ΔH = I1 – первый потенциал ионизации; Э – e = Э2+, ΔH = I2 – второй потенциал ионизации и т.д. I1 < I2 < I3 < I4...

Энергия ионизации определяет характер и прочность химической связи и восстановительные свойства элементов.

Элемент I1, эВ Элемент I1, эВ
H 13,6 Na 5,1
He 24,6 Mg 7,6
Li 5,4 Al 6,0
Be 9,3 Si 8,1
B 8,3 P 10,5
C 11,3 S 10,4
N 14,5 Cl 13,0
O 13,6 Ar 15,8
F 17,4 K 4,3
Ne 21,6 Ca 6,1
Таблица 2.5
Потенциалы (энергии) ионизации I1

Энергия ионизации изменяется периодически по мере заполнения электронами оболочек атомов (рис. 2.4).

I1 максимален у элементов с полностью заполненными валентными оболочками (у благородных газов), при переходе к следующему периоду I1 резко понижается – он минимален у щелочных металлов.

1
Рисунок 2.4
Потенциалы ионизации нейтральных атомов

Энергия связи электрона с ядром пропорциональна Z и обратно пропорциональна среднему (орбитальному) радиусу оболочки. Атомные радиусы d- и f-элементов с ростом Z в периоде уменьшается незначительно по сравнению с s- и p-элементами, поэтому их потенциалы ионизации растут также незначительно.

В главных подгруппах потенциалы ионизации с ростом Z уменьшаются вследствие увеличения числа электронных подоболочек и экранирования заряда ядра электронами внутренних подоболочек.

В побочных подгруппах d-электроны экранируются не только электронами заполненных оболочек, но и внешними s-электронами. Поэтому потенциал ионизации d-элементов с ростом Z в подгруппе увеличивается, хотя и незначительно.

Чем меньше потенциал ионизации, тем легче атом отдает электрон. Поэтому восстановительная способность нейтральных атомов с ростом Z в периоде уменьшается, в главных подгруппах растет, а в побочных – падает.

 

Энергия сродства к электрону. Другой важной в химии характеристикой атома является энергия сродства к электрону – энергия, выделяющаяся при присоединении электрона к нейтральному атому. Чем больше электронное сродство, тем более сильным окислителем является данный элемент. Экспериментальное определение энергии сродства к электрону E значительно сложнее, чем определение энергии ионизации. Величины E (в эВ) для некоторых атомов приведены ниже:

H He Li Be B C N O F Ne
E, эВ 0,75 –0,22 0,8 –0,19 0,30 1,27 –0,21 1,47 3,45 –0,57
Таблица 2.6
Значение энергии сродства к электрону E для некоторых атомов

Немонотонность изменения сродства к электрону в периоде также обусловлена сравнительной устойчивостью полностью и наполовину заполненных подоболочек. Самый сильный из всех элементарных окислителей – фтор (он обладает и самым малым атомным радиусом из всех элементов VII группы).

Отметим, что в отличие от ионизации присоединение двух и более электронов энергетически затруднено, и многозарядные одноатомные отрицательные ионы в свободном состоянии не существуют.

Окислительной способностью не обладают нейтральные атомы с устойчивыми конфигурациями s2 и s2p6 и переходные элементы. У остальных элементов в таблице Менделеева окислительная способность нейтральных атомов повышается слева направо и снизу вверх.

В периодах электроотрицательность растет, а в группах уменьшается с ростом Z, то есть растет от Cs к F по диагонали периодической системы. Это обстоятельство до некоторой степени определяет диагональное сходство элементов.

H
2,1
Li
1,0
Be
1,5
B
2,0
C
2,5
N
3,0
O
3,5
F
4,0
Na
0,9
Mg
1,2
Al
1,5
Si
1,8
P
2,1
S
2,5
Cl
3,0
K
0,8
Ca
1,0
Sc  1,3
Ti  1,5
V  1,6
Cr  1,6
Mn  1,5
Fe  1,8
Co  1,9
Ni  1,9
Cu  1,9
Zn  1,6
Ga
1,6
Ge
1,8
As
2,0
Se
2,4
Br
2,8
Rb
0,8
Sr
1,0
Y  1,2
Zr  1,4
Nb  1,6
Mo  1,8
Tc  1,9
Ru  2,2
Rn  2,2
Pd  2,2
Ag  1,9
Cd  1,7
In
1,7
Sn
1,8
Sb
1,9
Te
2,1
I
2,5
Cs
0,7
Ba
0,9
La  1,0
Hf  1,3
Ta  1,5
W  1,7
Re  1,9
Os  2,2
Ir  2,2
Pt  2,2
Au  2,4
Hg  1,9
Tl
1,8
Pb
1,9
Bi
1,9
Po
2,0
At
2,2
Ce-Lu
1,0–1,2
Таблица 2.7
Электроотрицательность элементов

В главных и побочных подгруппах свойства элементов меняются немонотонно, что обусловлено так называемой вторичной периодичностью, связанной с влиянием d- и f-электронных слоев.

Из анализа периодичности геометрических и энергетических параметров атомов следует, что периодическим законом можно пользоваться для определения физико-химических констант, предсказывать изменение радиусов, энергий ионизации и сродства к электрону, и, следовательно, кислотно-основные и окислительно-восстановительные свойства их соединений.


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий